Задача на решение уравнения с корнем третьей степени

Найдите корень уравнения:  .

Решение задачи

В7-Pavel

Данный урок показывает, как правильно решить уравнение, при условии, что неизвестная находится под конем третьей степени. Для получения привычного вида линейного уравнения необходимо возвести обе части равенства в куб. Это очень удобно еще и тем, что не следует находить область определения функции – ведь под кубическим корнем могут находиться как положительные, так и отрицательные числа. После возведения в степень, получим обычное линейное уравнение, решение которого можно свести к правилу: все значения с неизвестными переносим в левую часть, все числовые значения – в правую. После приведения подобных слагаемых слева и справа, находим значение неизвестной: делим значение, которое не содержит неизвестную на значение, которое находится рядом с неизвестной. Это и будет ответом.

Решение данной задачи рекомендовано для учащихся 7-х классов при изучении темы «Математический язык. Математическая модель» («Линейное уравнение с одной переменной», «Координатная прямая»). При подготовке к ЕГЭ урок рекомендован при повторении тем «Математический язык. Математическая модель».

Понравилась задача? Поделись ей с друзьями

Рекомендуем

Это важно!
18.06.2016, суббота

Китайское ЕГЭ гораздо жестче отечественного

Оставить отзыв

captcha