Нахождение корней уравнения, принадлежащие отрезку

а) Решите уравнение  .

б) Найдите все корни этого уравнения, принадлежащие промежутку  .

Решение задачи

c1resh

В данном уроке рассматривается пример решения дробно-рационального уравнения, содержащего тригонометрические функции. Приведенное решение можно использовать для результативной подготовки к ЕГЭ по математике, в частности при решении задач типа С1.

Прежде всего, определяется область определения функции – все допустимые значения аргумента . Затем выполняется преобразование числителя уменьшаемого согласно определению: тангенсом острого угла называется отношение синуса угла к его косинусу. Также в ходе решения применяется основное тригонометрическое тождество: . Таким образом, выполнив приведение к общему знаменателю всех слагаемых, за скобки выносится общий множитель. Определив корни уравнения, методом витков определяются те из них, которые принадлежат заданному отрезку. Для этого на построенной единичной окружности отмечается виток от левой границы заданного отрезка к правой. Далее найденные корни на единичной окружности соединяются отрезками с ее центром и определяются точки, в которых эти отрезки пересекают виток. Данные точки пересечения и являются решением задачи.

Понравилась задача? Поделись ей с друзьями

Рекомендуем

Это важно!
18.06.2016, суббота

Китайское ЕГЭ гораздо жестче отечественного

Оставить отзыв

captcha