Нахождение корней уравнения, принадлежащие промежутку

a) Решите уравнение  .

б) Найдите все корни этого уравнения, принадлежащие отрезку 

Решение задачи

В данном уроке рассматривается пример решения показательно-тригонометрического уравнения, которое можно использовать в качестве примера при решении задач типа С1 при подготовке к ЕГЭ.

Для начала первое слагаемое левой части уравнения раскладывается на множители, используя правило возведения в степень произведения: . Затем общий множитель выносится за скобки. Известно, что произведение равно нулю, когда один из множителей равен нулю. Значит, оба множителя исходного уравнения приравниваются к нулю. Так как область значений показательной функции строго больше нуля, то первое уравнение не имеет решений. Для решения следующего уравнения второе слагаемое переносится в правую часть. Затем, так как основания степеней одинаковы, то основания опускаются. Далее обе части полученного тригонометрического уравнения делятся на , не равное нулю. Решив данное уравнение, определяются корни уравнения. Затем определяются корни уравнения, принадлежащие заданному отрезку, с помощью двойного неравенство с одним неизвестным . Решением полученного неравенства являются только целые значения из полученного промежутка значений . Подставив найденные значения  в корень уравнения , определяется ответ задачи.

Понравилась задача? Поделись ей с друзьями

Рекомендуем

Это важно!
18.06.2016, суббота

Китайское ЕГЭ гораздо жестче отечественного

Оставить отзыв

captcha