Задача на определение расстояния

Рыболов в  часов утра на моторной лодке отправился от пристани против течения реки, через некоторое время бросил якорь,  часа ловил рыбу и вернулся обратно в  часов того же дня. На какое расстояние от пристани он отплыл, если скорость реки равна  км/ч, а собственная скорость лодки  км/ч? 

Решение задачи

Данный урок демонстрирует, как определить расстояние при известной скорости  и времени  движения, применяя формулу . Для начала условие задачи изображается схематически на рисунке, на котором отмечаются две неподвижными точки —  и . Значение отрезка  (равного расстоянию ) и требуется найти по условию задачи. Путем простых арифметических вычислений определяется общее время , проведенное в пути. Далее выполняются операции суммирования и разности известных по условию скоростей (по ходу и против хода движения). Используя формулу определения расстояния, составляются два равенства. В первом определяется расстояние , во втором — расстояние . Приравнивая оба равенства, в результате составляется линейное уравнение. Следует помнить, что при его решении неизвестные значения переносятся в левую часть, а известные — в правую. Таким образом, зная скорость движения и время, вычисляется требуемое для ответа расстояние .

Задача может использоваться учащимися в качестве подготовки к ОГЭ при решении задач типа ОГЭ 14.

Понравилась задача? Поделись ей с друзьями

Рекомендуем

Это важно!
18.06.2016, суббота

Китайское ЕГЭ гораздо жестче отечественного

Оставить отзыв

captcha